T-6B On-Board Oxygen Generation System (OBOGS)
Objectives

• Identify components and understand operation of OBOGS

(Utilize OBOGS system schematic while reviewing this slideshow)
References

• T-6B NATOPS Manual
 • Section 1
 • On-Board Oxygen Generating System (OBOGS)
 • Oxygen Pressure Regulator
 • Oxygen Pressure Regulator Supply Lever
 • Oxygen Pressure Regulator Concentration Lever
 • Oxygen Pressure Regulator Pressure Lever
 • Oxygen Pressure Regulator BIT Button
 • Oxygen Pressure Regulator Flow Indicator
OBOGS System Overview

- Provides each pilot with automatically regulated oxygen supply
- Uses conditioned bleed air from engine by pressure swing absorption using a molecular sieve
- Oxygen provided at a slight positive pressure
- Plenum provides a limited amount of oxygen in case of OBOGS failure
- Each cockpit has pressure regulator
Bleed Air Supply

- **Left Side P3 Port**
 - Tap off compressor section of engine
 - Supplies engine bleed air to OBOGS only

- **Shutoff Valve**
 - Controlled by supply lever on Oxygen Pressure Regulator
 - Allows the flow of bleed air into the OBOGS
Heat Exchanger

- Cools bleed air for use in OBOGS

- Divided into 2 sections:
 - Cooling for anti-G/Canopy seal/OBOGS (left side)
 - Cooling for all other ECS functions

- Air directed to heat exchanger by cooling air inlet duct on nose

- On ground, flap covers inlet duct and WOW switch activates blower to push air across heat exchanger
Supply Line

- **High Temperature Switch**
 - Measures temperature in OBOGS ducting
 - A **OBOGS TEMP** caution illuminates if temperature exceeds 200°F in OBOGS ducting
 - Indicates heat exchanger not sufficiently cooling bleed air

- **Condensation Drain**
 - Actually multiple drains in the system (3 total)
 - Removes moisture from lines as a direct result of cooling through heat exchanger

- **Low Pressure Switch**
 - Senses bleed air pressure upstream of the OBOGS concentrator
 - A **OBOGS FAIL** warning illuminates to indicate low bleed air pressure in system
 - OBOGS Malfunction procedures requires advancing the PCL to see if warning will extinguish
OBOGS Unit

- Located in left avionics bay (and labeled OXYGEN)
- Powered by Hot Battery Bus
- Activation and functional settings controlled by Oxygen Pressure Regulator (either cockpit)
- Extracts oxygen from conditioned bleed air by pressure swing absorption using a molecular sieve
- Oxygen stored in Plenum and pushed to pilots at a low positive pressure
- Internally:
 - Shutoff Valve
 - Composition Controller
 - Concentrator
 - Monitor
- An OBOGS FAIL warning illuminates to indicate internal failure of system
OBOGS Unit

- **Water Separator**
 - Internal system to actively remove water from bleed air
 - Drains water to external vent

- **Pressure Regulator/Shutoff Valve**
 - Controlled by supply lever on regulator
 - Turning supply lever on in either cockpit opens valve and allows oxygen production

- **Concentrator**
 - Sets oxygen concentration as selected by concentration lever on regulator
 - Concentration is based off of current altitude
 - When concentration levers are in NORMAL:
 - Oxygen concentration is 25% – 70% for altitudes up to 15,000 ft MSL
 - Oxygen concentration is 45% - 95% for altitudes above 15,000 ft MSL
 - When either concentration lever is in MAX:
 - OBOGS supplies highest possible oxygen concentration to both regulators
 - 95% oxygen & 5% inert gas
 - Maximum concentration light (green) illuminates on regulator

- **Composition Controller**
 - Controls the gas composition (mixture) of the product

- **Monitor**
 - Monitors composition and concentration of air being created
 - An OBOGS FAIL warning illuminates to indicate low oxygen concentration from the system

OBOGS Fail Warning Summary

- An OBOGS FAIL warning illuminates to indicate:
 - Low bleed air pressure
 - Low oxygen concentration
 - Internal system failure

- You can only affect the failure due to low pressure by advancing the PCL!
OBOGS Unit

- **Built-in-Test (BIT)**
 - Power up BIT to check system on initial start up
 - System enters a 3 minute, sensor warm-up period when first activated
 - The **OBOGS FAIL** warning inhibited during the warm-up period (3 minutes) for concentration & internal failure (still works for low pressure)
 - At end of BIT system will activate **OBOGS FAIL** warning if internal failure
 - Warning remains illuminated until failure is cleared by the self-test or by resetting regulators

- **Initiated Built-in-Test (I-BIT)**
 - Use button on regulator to initiated the BIT at times other than the power up BIT
 - Provides verification that OBOGS monitor is working along with fail warning
 - Momentarily pushing button:
 - Opens valve in concentrator allowing ambient air into the concentration monitor
 - Concentration drops below normal (20-30 seconds)
 - The **OBOGS FAIL** warning illuminates for low concentration
 - Once valve closes and concentration returns, warning extinguishes (within 2 minutes)

- **Operations with mask down or loose fitting:**
 - May induce **OBOGS FAIL** warning
 - If fault does not automatically clear after securing mask, perform I-BIT check
 - No further action required if I-BIT check passes
OBOGS Unit

- Provides a limited supply of oxygen in the event OBOGS fails

- Duration of Plenum depends on:
 - Cockpit pressurization
 - Aircraft pressure altitude
 - Pilot regulator settings
 - Pilot demand
Pressure Regulator

- Panel-mounted regulator on right side console of each cockpit
- Controls OBOGS electrical power and oxygen flow for respective cockpit
- Can be “gang-loaded” in event of hypoxia symptoms or loss of cabin pressure (ON/MAX/EMERGENCY)
Pressure Regulator

- **Supply Lever**
 - Controls power to OBOGS & oxygen flow to respective regulator
 - **ON**
 - Opens P3 Shutoff Valve (left side)
 - Opens Regulator Shutoff Valve (internally) for respective regulator
 - **OFF**
 - Cuts OBOGS power & oxygen flow to respective regulator
 - Both regulator supply levers must be OFF to disable the OBOGS system

- **Concentration Lever**
 - Sets oxygen concentration
 - Concentration is based off of current altitude
 - When concentration levers are in NORMAL:
 - Oxygen concentration is 25% – 70% for altitudes up to 15,000 ft MSL
 - Oxygen concentration is 45% - 95% for altitudes above 15,000 ft MSL
 - When either concentration lever is in MAX:
 - OBOGS supplies highest possible oxygen concentration to both regulators
 - 95% oxygen & 5% inert gas
 - Maximum concentration light (green) illuminates on regulator

Built In Test (BIT)

- Initiated upon first activation of system
- Sensor warm-up period of 3 min
- OBOGS FAIL inhibited (by Monitor for concentration)
- OBOGS FAIL still works for Low Pressure
- At end of 3 min = OBOGS FAIL if internal failure

- Initiated Built In Test (I-BIT)
 - Initiated by BIT on regulator after 3 min warm-up
 - Verification that OBOGS sensor & OBOGS FAIL work
 - Use:
 - Momentarily push button
 - Oxy concentration purposely drops
 - Get OBOGS FAIL from Monitor (for concentration)
 - Warning extinguishes within 2 min

Flow Indicator

- **OXYGEN FLOW**
 - **+ EMERGENCY**
 - **+ NORMAL**
 - **+ TEST MASK**
 - **BIT**
 - **SUPPLY**
 - **ON**
 - **OFF**

- **Cockpit Specific**
 - Affects Both Cockpits
 - < 15K: 25 – 70%
 - > 15K: 45 – 95%
 - MAX: 95%

- **Cockpit Specific**
 - (Turns on OBOGS & Opens P3 Shutoff Valve)
Pressure Regulator

- **Pressure Lever**
 - EMERGENCY – Provides pilot with positive pressure oxygen flow needed during emergencies
 - NORMAL – Provides a slight positive pressure of oxygen flow
 - TEST MASK – Provides highly pressurized flow to check face-to-mask seal

- **BIT Button**
 - Pressing momentarily activates an I-BIT

- **Flow Indicator**
 - Provides visual indication of oxygen flow through regulator
 - Each inward breath activates a flow indicator (white)
 - Can indicate leak in mask or hose assembly
Pressure Regulator

- Anti-Suffocation Valve
 - Positioned where oxygen hose connected to panel
 - Ensures pilot can breath in event OBOGS fails
Conclusion

- Identified components and described operations of OBOGS

Abnormal OBOGS Scenarios located in Procedures Section/EPs