C3401
Briefing Guide
(Worksheet)

Planned Route:
- **Takeoff:** KNSE, Rwy 23
- **Altitude:** As required (6000’ AGL minimum restriction)
- **Route:** North or South MOA, Pelican, Area 1 or 3 may be utilized
- **Training Device:** OFT

SYLLABUS NOTES:
Practice scenario-based emergency procedures and introduce students to aerobatic maneuvers.

The student shall only use the HUD to accomplish the SSR within this block of training.

No strap-in required for student. Need to have gloves, kneeboard, NATOPS PCL for this event.

Student will use Abbreviated Simulator checklist to expedite becoming airborne. Once airborne all applicable checklist will be conducted from the quad-fold version.

Special Syllabus Requirement
OCF Recovery

Discuss (If time becomes a factor, finish discussion items during event or debrief)

a. **Anti-G Straining Maneuver (AGSM)**
 - When is it required
 - FTI procedures

b. **Maneuvering Speed**
 - Maximum Operating Airspeed (Vmo)
 - Maneuvering Speed (Vo) limitations
 - Time Limits

c. **Aerobatics**
 - Flight Manual G limits for aircraft
 - FTI definition
 - Restrictions
 - Aerobatic Maneuvers
 - Loop
 - Cuban Eight
 - Immelmann
 - Split-S
 - Aileron Roll
 - Barrel Roll
 - Wingover
 - Cloverleaf

Ejection Seat Sequence Mitigation Procedures

OCF Recovery Procedures
- Definition
- Critical Action Items

FWOP IFG Aerobatic Training Rules
e. Contact Unusual Attitudes
 - Nose High
 - Nose Low
 - Inverted

f. Airborne Damaged Aircraft
 - Procedures

 Rudder System Malfunction
 - Procedures
<table>
<thead>
<tr>
<th>Maneuver</th>
<th>MIF</th>
<th>C3401</th>
<th>C3402</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gen Knowledge / Procedures</td>
<td>4+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2. Emergency Procedures</td>
<td>4+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3. Headwork / Situational Awareness</td>
<td>3+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4. Basic Airwork</td>
<td>4+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5. In-Flight Checks / Fuel Management</td>
<td>4+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6. In-Flight Planning / Area Orientation</td>
<td>3+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7. Task Management</td>
<td>3+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8. Communication</td>
<td>4+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10. Ground Operations</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Takeoff</td>
<td>4+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12. Departure</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. G-Awareness Exercise</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Power-On Stall</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Landing Pattern Stalls</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Power-Off Stalls</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Spin</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Contact Unusual Attitudes</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Loop</td>
<td>2+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>23. Aileron Roll</td>
<td>2+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>24. Split-S</td>
<td>2+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>25. Barrel Roll</td>
<td>2+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>26. Cloverleaf</td>
<td>2+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>27. Immelmann</td>
<td>2+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>28. Cuban Eight</td>
<td>2+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>29. Wingover</td>
<td>2+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>30. Slip</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Power Loss</td>
<td>3+</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>32. Precautionary Emergency Landing</td>
<td>3+</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>33. Pel/P</td>
<td>3+</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>34. Elp Landing</td>
<td>3+</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>35. Arrival / Course Rules</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36. Landing Pattern</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37. No Flap Landing</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37. Takeoff Flap Landing</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37. Ldg Flap Landing</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37. Full-Stop Landing</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38. Aoa Pattern</td>
<td>2+</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>39. Waveoff</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Syllabus Requirements</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

SSR’s: C3401 OCF recovery
C3402 HUD introduction (aerobatic maneuvers and landing pattern) and windshear recovery.

Discuss Items:

C3401: Aerobatics, OCF recovery procedures, Contact unusual attitudes, airborne damaged aircraft, maneuvering speed, and AGSM

C3402: Combination maneuvers, windshear recovery, AOA Pattern, HUD, and any emergency procedure.

Depart ______________ Arrive ______________ Side # ______________ Sim Time ___________

JPPT 1542.166B MAR 2017
Most T-6B G-LOC episodes occur during rapid G-loading of 3 to 5 G’s over 2 to 5 second intervals. Pilots can prepare themselves for the physical stress of rapid accelerations and therefore prevent G-LOC by taking certain precautions:

1. Learn and use the proper Anti-G Straining Maneuver (AGSM), more commonly called the "HICK Maneuver." There are two components to the recommended AGSM:

 a. The first component is a continuous and maximum contraction (if necessary) of all skeletal muscles including the arms, legs, chest, and abdominal muscles. This tensing of the skeletal muscles restricts blood flow in the G-dependent areas of the body and thereby assists in the retention of blood in the thoracic region (including the heart) and the brain.

 b. The second component of the AGSM involves repeated closing of the respiratory tract at 2.5 to 3.0-second intervals. Its purpose is to counter the downward G force by expanding the lungs and increasing the chest pressure, thereby forcing blood to flow from the heart to the brain.

The respiratory tract is an open breathing system which starts at the nose and mouth and ends deep in the lungs. It can be completely closed off at several different points, the most effective of which is the glottis. Closing the glottis (which is located behind the "Adam’s Apple") yields the highest increase of chest pressure. The glottis can be closed off by saying the word "HICK" and catching it about ¾ of the way through the word ("Hiii-"). This should be done after a deep inspiration, followed by forcefully closing the glottis as you say "HICK." Bear down for 2.5 to 3.0 seconds, then rapidly exhale by finishing the word HICK ("-ka"). This is immediately followed by the next deep inhalation, repeating the cycle until the G-loading is discontinued.

The exhalation and inhalation phase should last for no more than 0.5 to 1.0 second. Since the blood pressure falls dramatically during this phase, its duration must be kept to a minimum.

WARNING

Do not hold your respiratory straining too long (more than five seconds) since this will prevent the blood from returning to the heart properly and may result in loss of consciousness.

Anticipate the onset of high G forces whenever possible. Skeletal muscles should be tensed prior to the onset, coupled with the "HICK" respiratory cycle as the G-loading increases. Initiating the AGSM too early can inhibit the body’s natural cardiovascular reflex responses, while beginning too late creates a deficit situation which may be difficult to overcome.

NOTE

If properly performed, the AGSM should provide adequate protection against G-LOC while performing the various aerobatic maneuvers. If you experience difficulty, or are in doubt as to whether or not you are executing the maneuver correctly, see your squadron flight surgeon or wing Aeromedical Safety Officer.
2. Inter-cockpit communication between aircrew is imperative. Both individuals must rely on the other not to apply high G forces without first giving prior warning. Historically poor crew communication has been a major causal factor in G-LOC episodes. During high G maneuvers, G-suit inflation can inadvertently key the radio transmit switch on the PCL. Take care to position your leg to prevent this from occurring and blocking communications with your IP.

3. Be prepared physically.
 a. Avoid flying if ill or extremely fatigued.
 b. Maintain an adequate fluid intake and do not skip meals.
 c. Stay in shape. The optimum fitness program for increasing G-tolerance is a combination of moderate weight training and cardiovascular aerobic exercise (running, walking, swimming, etc.) 2-3 times weekly. Avoid excessive long distance running (more than 25 miles per week) or overly intense weight training. These will typically result in lower blood pressure and heart rate which may decrease G-tolerance.

4. **G awareness Exercise/G warm-up maneuver:** Accomplish a G-awareness exercise on sorties that include maneuvers that require or may result in 3 or more Gs. This may be accomplished by performing the following procedures:
 a. Complete the Pre-Stalling, Spinning, and Aerobatic Checklist. Notify the other crewmember that you are going to commence the G-awareness Exercise.
 b. The G-awareness exercise should be a level or slightly descending turn, using maximum power. Begin the maneuver with sufficient airspeed to sustain 4 Gs. For planning purposes, use approximately 200-220 knots minimum for a level to slightly descending turn where the nose remains within 10° of the horizon.
 c. The G-onset rate should be slow and smooth, allowing sufficient time to evaluate the effectiveness of the AGSM and determine G-tolerance. Increase Gs to approximately 4 Gs and maintain for approximately 4 to 5 breathing cycles in order to allow full cardiovascular response (approximately 180° of turn).
 d. For advanced aerobatic and formation training, the G-awareness exercise should be flown to G-loads of 4 - 5 Gs.

905. **CONTACT UNUSUAL ATTITUDES**

1. **Description.** Recovery may be required due to an improperly flown maneuver, disorientation, area boundaries (lateral or vertical), an aircraft malfunction, or traffic conflicts.
Maximum operating airspeed (\(V_{MO}\)) is not to be intentionally exceeded in any phase of flight (climb, cruise, descent, maneuvering). \(V_{MO}\) is 316 KIAS up to and including 19,020 feet MSL.

Maximum operating Mach number (\(M_{MO}\)) is not to be intentionally exceeded in any phase of flight (climb, cruise, descent, maneuvering). Above 19,020 feet MSL, \(M_{MO}\) is 0.67 indicated Mach number (IMN). The airspeed in KIAS which corresponds to \(M_{MO}\) varies with altitude.

WING FLAPS LIMITATIONS

Maximum airspeed with the flaps extended (\(V_{FE}\)) or during flap operation is 150 KIAS.

LANDING GEAR LIMITATIONS

Maximum airspeed with the landing gear extended (\(V_{LE}\)) or during landing gear operation is 150 KIAS.

TURBULENT AIR PENETRATION SPEED LIMITATIONS (\(V_{G}\))

Maximum airspeed for flying through turbulence is 207 KIAS. Recommended airspeed in turbulent air is 180 KIAS.

MANEUVERING SPEED LIMITATIONS (\(V_{O}\))

Operating maneuvering speed (\(V_{O}\)) is the speed above which full or abrupt control movements in one axis can result in structural damage to the aircraft. \(V_{O}\) is 227 KIAS. Full rudder deflection above 150 KIAS, however, will exceed the limits for the rudder control system.
FLIGHT MANEUVERING LIMITATIONS

TIME LIMITS

Zero G is limited to 5 seconds maximum.

CAUTION

Holding a zero G-loading for over 5 seconds can cause engine damage and possible engine failure, regardless of oil pressure indications.

Negative G operation (including inverted) is limited to 60 seconds.

The following sustained negative G limitations ensure recovery of the center section fuel tank:

1. Negative G maneuvers within 60 seconds followed by 60 seconds upright (positive G) flight before conducting additional negative G maneuvers.
2. Do not exceed -2.5 G for negative operation longer than 30 seconds.

PROHIBITED MANEUVERS

Inverted stalls
Inverted spins
Aggravated spins past two turns
Spins with PCL above idle
Spins with landing gear, flaps, or speed brake extended
Spins with PMU off
Spins below 10,000 feet pressure altitude
Spins above 22,000 feet pressure altitude
Abrupt cross-controlled (snap) maneuvers
Aerobatic maneuvers, spins, or stalls with a fuel imbalance greater than 50 pounds between wings
Tail slides

ACCELERATION LIMITATIONS

The operating flight strengths are shown in Figure 5-4.

SYMMETRIC

Clean +7.0 to -3.5 G's

ASYMMETRIC (ROLLING G'S)

Clean +4.7 to -1.0 G's
Gear and/or flaps extended +2.0 to 0.0 G's

For uncoordinated rolling maneuvers initiated at -1 G, the maximum bank angle change is 180 degrees.

NOTE

Exceeding the acceleration limits locks the max (or min) G reading on the PFD at the exceeded value in red text and cannot be reset without maintenance action on the ground.

CENTER OF GRAVITY LIMITATIONS (LANDING GEAR EXTENDED)

The center of gravity (CG) limitations are shown in Figure 5-5. When a solo pilot weight (including gear) exceeds 260 pounds, when rear pilot weight (including gear) exceeds 260 pounds, when combined crew weight exceeds 480 pounds (with gear), when overwing refueling is accomplished over 1100 pounds, or when baggage weight exceeds 10 pounds, the weight and balance of the aircraft shall be checked to determine that gross weight and CG limitations are not exceeded.

The center of gravity (CG) limitations are shown in Figure 5-5. When a solo pilot weight (including gear) exceeds 260 pounds, when rear pilot weight (including gear) exceeds 260 pounds, when combined crew weight exceeds 480 pounds (with gear), when overwing refueling is accomplished over 1100 pounds, or when baggage weight exceeds 10 pounds, the weight and balance of the aircraft shall be checked to determine that gross weight and CG limitations are not exceeded.

Allowable forward CG limit up to 5850 pounds is 18.8% MAC (164.7 inches aft of datum).
Linear variation forward CG limit at 5850 pounds is 18.8% MAC (164.7 inches aft of datum).
Allowable forward CG limit at 6900 pounds is 20.0% MAC (165.5 inches aft of datum).
Allowable aft CG limit at all weights is 26.0% MAC (169.3 inches aft of datum).

NOTE

The reference datum is located 16.46 inches forward of the tip of the propeller spinner.
CHAPTER NINE
AEROBATICS

900. INTRODUCTION

Aerobatics is any intentional maneuver involving an abrupt change in aircraft’s attitude, intentionally performed spins, or other maneuvers requiring pitch/dive angles greater than 45°, bank angles greater than 60°, or accelerations greater than two Gs.

You will be receiving training on the Anti-G straining maneuver (AGSM) and the physiological effects of increased G loads. Review the aircraft G limits.

Refer to Figure 9-1 for aerobatic maneuver configuration parameters.

<table>
<thead>
<tr>
<th>Aerobatic Maneuver</th>
<th>Entry Airspeed</th>
<th>Gs Required</th>
<th>Altitude Change</th>
<th>Exit Airspeed</th>
<th>Energy Classification</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop</td>
<td>230 – 250</td>
<td>High</td>
<td>NC</td>
<td>230 – 250</td>
<td>Neutral</td>
<td>MAX</td>
</tr>
<tr>
<td>Wingover</td>
<td>200 – 220</td>
<td>Low</td>
<td>NC</td>
<td>200 – 220</td>
<td>Neutral</td>
<td>~70%</td>
</tr>
<tr>
<td>Barrel Roll</td>
<td>200 – 220</td>
<td>Mod</td>
<td>NC</td>
<td>N/A</td>
<td>Neutral</td>
<td>~80%</td>
</tr>
<tr>
<td>Aileron Roll</td>
<td>180 – 220</td>
<td>Low</td>
<td>NC</td>
<td>N/A</td>
<td>Loser</td>
<td>~80%</td>
</tr>
<tr>
<td>Split S</td>
<td>120 – 140</td>
<td>High</td>
<td>- 3000 feet</td>
<td>< 250</td>
<td>Neutral</td>
<td>Idle-80%</td>
</tr>
<tr>
<td>Cuban Eight</td>
<td>230 – 250</td>
<td>High</td>
<td>NC</td>
<td>230 – 250</td>
<td>Neutral</td>
<td>MAX</td>
</tr>
<tr>
<td>Immelmann</td>
<td>230 – 250</td>
<td>High</td>
<td>+ 3000 feet</td>
<td>Flying A/S</td>
<td>Gainer</td>
<td>MAX</td>
</tr>
<tr>
<td>Cloverleaf</td>
<td>200 – 220</td>
<td>High</td>
<td>NC</td>
<td>200 - 220</td>
<td>Neutral</td>
<td>MAX</td>
</tr>
</tbody>
</table>

Figure 9-1 Aerobatic Maneuver Parameters

Prior to performing aerobatic maneuvers, complete the Pre-Stalling, Spinning, and Aerobatic Checks per the NATOPS PCL and accomplish clearing turns. For the clearing turns, use a minimum of 45° AOB and turn for a minimum of 180°. Throughout the turn thoroughly check the area for other aircraft.

Start your aerobatic maneuvers from an altitude which will permit a complete maneuver and a return to straight and level flight at or above 6000 feet AGL. You must not exceed the maximum altitude permitted for your operating area. The maneuvers performed require approximately 3000 feet vertically.

901. RULES AND PRECAUTIONS FOR AEROBATIC FLIGHT

Due to their unique nature, there are certain rules and precautions you must observe prior to performing any aerobatic maneuver. Flight Rules and Regulations (FRR) and local SOP will prescribe restrictions governing the airspace within which you may perform aerobatic maneuvers. Ensure that you are thoroughly familiar with these regulations. Strict compliance is mandatory.
Loop: The loop is a 360° turn in the vertical plane with constant heading and nose track.

- 3C’s
- Set Power to MAX, 230-250 KIAS
 - Clear overhead, report entry altitude.
 - Pull 4 G’s in 2-3 seconds.
 - Check wings in vertical and horizontal.
 - Add right rudder to maintain alignment.
 - Acquire horizon/reference line and pull through with 4 G’s.
Cuban Eight: Modified Loop and Immelmann, first part is 5/8th’s Loop followed by half roll. Repeat in opposite direction.

- 3 C’s
- Set Power to MAX, 230-250 KIAS
 - Clear overhead, report entry altitude.
 - Pull 4 G’s in 2-3 seconds.
 - After passing through the vertical, acquire opposite horizon.
 - As nose approaches 45° below horizon, relax backstick and roll wings level.
 - Maintain 45° nose low until commencing 2nd half.
Immelmann: Is a half loop followed by a half roll, 180° reversal in heading with approximately 3,000 gain in altitude, all flown in the same vertical plane.

- 3C’s
- Set Power to MAX, 230-250 KIAS
 - Clear overhead, report entry altitude.
 - Pull 4 G’s in 2-3 seconds.
 - Check wings in vertical and horizontal.
 - Add right rudder to maintain alignment.
 - As nose approaches 10° above opposite horizon, relax backstick and roll wings level.
Split-S: Combines the first half of an aileron roll with the last half of a loop. Aircraft climbs during entry and descends during recovery.

- 3 C’s
- Set Power to IDLE and decelerate to 140 KTS.
 - At 140 KTS raise nose to 5-10° up.
 - Roll inverted, neutralize ailerons, apply slight forward stick momentarily.
 - Pull straight out 4 G’s.
 - Check oil pressure within normal limits and report on ICS, reset power as required.
Aileron Roll: It is a 360° roll about the longitudinal axis of the aircraft.

- 3 C’s
- Set Power to approx 80% TQ, 180-220 KIAS
 - Raise nose approximately 10° above horizon.
 - Relax backstick.
 - Roll the aircraft left or right using aileron.
Barrel Roll: Aircraft is rolled 360° about an imaginary point which bears 45° off the nose. Definite seat pressure should be felt throughout the roll.

- **3 C’s**
- Set Power to approx 80% TQ, 200-220 KIAS
 - Clear overhead, report entry altitude.
 - Raise nose while keeping wings level.
 - As nose passes 20° above horizon begin gradual roll to arrive at 45° position 55-60° nose up and 90° AOB.
 - Increase lateral stick in direction of roll to arrive at 90° position inverted.
 - Go through the horizon looking over opposite shoulder to pick up section line.
Wingover: It's a 180° reversal in the direction of flight accomplished by combining a smooth climbing turn for 90° with a smooth diving turn for 90°

- 3 C’s
- Set Power to approx 70% TQ, 200-220 KIAS
 - Select reference point 90 off the wing
 - Begin gradual climbing turn to 90 reference point
 - Time to arrive 45 position with 45° nose up and 45° AOB
 - The nose should arrive at 90 reference point with 90 AOB and nose on the horizon
 - Passing horizon, let the nose fall, and begin rolling out of bank.
 - The below horizon leaf should be symmetric to first leaf (nose above horizon)
 - 2nd wingover turn same as 1st
Cloverleaf: Four identical maneuvers, each of which changes heading by 90°. The pull up is similar to loop but less G’s. At the top is a rolling pull to 90° displace from original heading. The lower part or pull is flown like a Split-S.

- 3C’s
- Set Power to MAX, 200-220 KIAS
 - 2-3 G’s initial nose up pull
 - When 45° nose high, roll towards 90° reference point.
 - Continue the pull and roll so the nose passes through reference point with wings level inverted (120 KIAS)
 - Keep level and pull through the bottom (Spilt-S)
 - Approaching horizon, pull through and start next leaf
While landing gear position has little effect on stall characteristics, extending the flaps aggravates the roll-off tendency at stall. Speed brake extension or fuel imbalance (to 50 pounds) have negligible effect on stall characteristics.

Inverted stalls have been performed with power off and power on in the cruise configuration. Stalls at both power configurations are characterized by lighter aileron forces, and a tendency for the nose to wander in yaw. There is no G break, and there is little buffet or pitching motion as the stall is approached; however, the airspeed indicator will suddenly decrease to zero during the latter stages of the maneuver. A power-off inverted stall is characterized by a slow nose drop with the control stick on the forward stop. During an inverted stall at 100% torque, the aircraft will maintain a pitch attitude of approximately 30° nose above the horizon with full forward stick.

NOTE
Intentional inverted stalls are prohibited.

ACCELERATED STALLS

An accelerated stall induced by a turning entry and increased G is preceded by pronounced airframe buffet before the stall is reached. Buffet onset occurs well prior to the actual stall at higher G conditions. However, below 2 G’s there may be little natural buffet prior to the actual stall. During a turning entry, the stall is characterized by a moderately abrupt lateral roll-off (either into or away from the direction of turn). The actual stall speed may vary by several knots depending on the entry from a left or right turn. An accelerated stall induced by a rapid decrease in airspeed or a pitch up exhibits similar lateral roll-off characteristics. Sustained heavy buffet in accelerated stalls at greater than 3 G’s can produce damaging loads in the fuselage and empennage. Accelerated stalls initiated at greater than 3 G’s do not sustain heavy buffet beyond the period required to recognize the accelerated stall.

CAUTION
For accelerated stalls initiated at greater than 3 G’s, do not sustain heavy buffet beyond the period required to recognize the accelerated stall.

STALL RECOVERY

Stall recovery is accomplished as follows:

1. Reduce angle of attack. This may require a reduction in back stick pressure, or moving stick progressively towards neutral, or moving stick forward of the trim position.

2. Advance PCL as required to maintain flying airspeed. Anticipate engine power effects, applying aileron and rudder as necessary to maintain or achieve wings level.

3. Use aileron and rudder control as necessary to maintain wings-level, coordinated flight throughout the recovery.

4. As flying speed is regained, smoothly increase back pressure on the control stick to stop the attitude loss and return to level flight, taking care to avoid entering a secondary, accelerated stall during recovery.

Altitude lost during recovery from a wings-level stall is usually less than 100 feet, assuming a prompt application of recovery power. Power-on, accelerated and inverted stall recoveries will lose even less altitude to regain flying speed; however, these stalls will most likely result in an unusual attitude requiring more altitude for recovery.

DEPARTURES FROM CONTROLLED FLIGHT

DEPARTURES/OUT-OF-CONTROL FLIGHT (OCF)

A situation in which the aircraft does not respond immediately and in a normal sense to application of flight controls is considered out-of-control flight (OCF) or a departure. OCF is the seemingly random motion of the aircraft about one or more axes, usually resulting from a stalled condition in which the inertial forces on the aircraft exceed the authority of the aerodynamic controls (ailerons, elevator, and rudder). For this reason, initial aircraft motions may not be halted by any application of flight controls and motions may be opposite the direction of the applied control. Certain control applications may intensify the OCF motions. OCF typically results from a stall in accelerated or out-of-balance (uncoordinated) flight conditions or a stall where improper or overly aggressive control inputs are applied. In general, OCF can be divided into three categories: poststall gyrations, incipient spins, and steady-state spins.

Poststall Gyrations

Poststall gyrations are the motions of the aircraft about one or more axes immediately following a stall and prior to the incipient spin. A poststall gyration can usually be identified by uncommanded (and often rapid) aircraft motions about any axis, a feeling that the controls are no longer effective nor acting in the normal sense, stalled or near-stalled angle of attack, transient or erratic airspeed indications, and random turn needle deflections.

A poststall gyration can occur at high airspeed (following an accelerated stall) or at low airspeed (following a normal stall). At high airspeed, the poststall gyration will quickly dissipate kinetic energy and may place high stresses on the
AIR FORCE TO 1T-6B-1
NAVY NAVAIR A1-T6BAA-NFM-100

WARNING
If rate of descent (indicated on the VSI while stabilized at 125 KIAS with gear, flaps, and speed brake retracted and 4-6% torque) is greater than 1500 ft/min, increase torque as necessary (up to 131%) to achieve approximately 1350-1500 ft/min rate of descent. If engine power is insufficient to produce a rate of descent less than 1500 ft/min, set PCL to OFF.

NOTE
The pilot should consider moving the PCL through the full range of motion to determine power available.

IF POWER IS SUFFICIENT FOR CONTINUED FLIGHT:
* 5. PEL - Execute

IF POWER IS INSUFFICIENT TO COMPLETE PEL:
If loss of thrust is the result of uncommanded propeller feather and the engine remains within operational limits (ITT and torque), it is possible for the propeller to eventually unfeather and restore useful power. An operating engine will provide power to accessories functions such as OBOGS, DEFOG, pressurization, and hydraulic equipment. Consider leaving the engine running while monitoring descent rate.

COMPRRESSOR STALLS
Compressor stalls may be initially identified by abnormal engine noise, increasing ITT, and decreasing N1 and torque, possibly followed by fluctuations in these indications. Audible indications, which may include loud bangs, backfires, or engine sputtering, represent a major difference between a stall and an uncommanded power change/loss of power/uncommanded propeller feather, and may aid in diagnosing the malfunction. Flames and/or smoke may also be visible from the exhaust stacks. Compressor stalls may be caused by damaged or degraded compressor/turbine blades, disrupted airflow into the engine, or compressor bleed valve malfunctions and therefore may occur during either engine acceleration or deceleration. Severe compressor stalls may cause engine damage and/or flameout.

* 1. PCL - Slowly retard below stall threshold
* 2. DEFOG switch - ON

NOTE
Setting the DEFOG switch to ON automatically selects high bleed air inflow and will alleviate back pressure on the engine compressor.

* 3. PCL - Slowly advance (as required)

IF POWER IS SUFFICIENT FOR CONTINUED FLIGHT:
* 4. PEL - Execute

IF POWER IS INSUFFICIENT TO COMPLETE PEL:
* 5. PCL - OFF

When the engine is so underpowered that high rates of descent occur, any delay in shutting down the engine to feather the propeller may result in insufficient altitude to reach a suitable landing site.

* 6. FIREWALL SHUTOFF handle - Pull
* 7. Execute Forced Landing or Eject

INADVERTENT DEPARTURE FROM CONTROLLED FLIGHT
It is possible to depart controlled flight as a result of improper or overly aggressive control inputs near stall, mechanical failures, atmospheric conditions, or a combination thereof. Power setting has a strong influence on inducing or recovering from out of control conditions for the aircraft. Reducing power immediately may allow the aircraft to recover with no other pilot intervention or action. If the out of control condition is allowed to progress, departure
characteristics can be highly oscillatory and disorienting. It is crucial the pilot neutralize controls. If an inadvertent departure from controlled flight is encountered, accomplish the following steps, allowing time for the power and controls to take effect.

* 1. **PCL - IDLE**
* 2. **CONTROLS - NEUTRAL**

WARNING

Improperly positioning the control stick/elevator aft of the neutral position may significantly delay or prevent the aircraft from recovering from an OCF/spin which could result in loss of aircraft and/or crew.

NOTE

Cycling of control positions or applying anti-spin controls prematurely can aggravate aircraft motion and significantly delay recovery.

* 3. **ALTITUDE - CHECK**

WARNING

Recommended minimum altitude for ejection is 6000 feet AGL.

* 4. **Recover from unusual attitude**

CAUTION

Power-on and inverted departures or spins will result in high loads on the engine and torque shaft. If an inverted or power-on departure is encountered, land as soon as conditions permit. The pilot should suspect possible engine damage and may experience unusual engine operation accompanied by low oil pressure or CHIP detector warning. In all cases of inverted or power-on departures, the engine shall be inspected by qualified maintenance personnel after flight.

FIRE IN FLIGHT

Illumination of the FIRE annunciator indicates the possibility of fire in the engine compartment. Pending confirmation of an engine fire, initiate PEL procedures with the intention of landing as soon as possible.

IF FIRE IS CONFIRMED:

WARNING

Illumination of the fire warning light accompanied by one or more of the following indications is confirmation of an engine fire: smoke; flames; engine vibration; unusual sounds; high ITT; and fluctuating oil pressure, oil temperature, or hydraulic pressure.

* 1. **PCL - OFF**
* 2. **FIREWALL SHUTOFF HANDLE - PULL**

IF FIRE IS EXTINGUISHED:

* 3. Forced Landing - Execute

IF FIRE DOES NOT EXTINGUISH OR FORCED LANDING IS IMPractical:

* 4. **Eject (BOTH)**

IF FIRE IS NOT CONFIRMED:

* 5. **PEL - Execute**

WARNING

- A fire warning light with no accompanying indication is not a confirmed fire. Do not shut down an engine for an unconfirmed fire.
- High engine compartment temperatures resulting from a bleed air leak may cause illumination of the fire warning light. Reducing the PCL setting towards IDLE will decrease the amount of bleed air and possibly extinguish the fire warning light; however, advancing the PCL might be required to intercept the ELP. Regardless of reducing or advancing the PCL, continue to investigate for indications confirming an engine fire.
- If the fire cannot be confirmed, the fire warning system may be at fault and should be tested as conditions permit. If only one fire loop annunciator is illuminated (top or bottom half only), a false fire indication may exist if the other loop tests good.

SMOKE AND FUME ELIMINATION/ELECTRICAL FIRE

This procedure may be used in the event of smoke or fumes as a result of an electrical fire or contamination from the ECS system.
whether or not you are executing the maneuver correctly, see your
squadron flight surgeon or wing Aeromedical Safety Officer.

2. Inter-cockpit communication between aircrew is imperative. Both individuals must rely on
the other not to apply high G forces without first giving prior warning. Historically poor crew
communication has been a major causal factor in G-LOC episodes. During high G maneuvers,
G-suit inflation can inadvertently key the radio transmit switch on the PCL. Take care to
position your leg to prevent this from occurring and blocking communications with your IP.

3. Be prepared physically.
 a. Avoid flying if ill or extremely fatigued.
 b. Maintain an adequate fluid intake and do not skip meals.
 c. Stay in shape. The optimum fitness program for increasing G-tolerance is a
 combination of moderate weight training and cardiovascular aerobic exercise
 (running, walking, swimming, etc.) 2-3 times weekly. Avoid excessive long distance
 running (more than 25 miles per week) or overly intense weight training. These will
 typically result in lower blood pressure and heart rate which may decrease G-
 tolerance.

4. G awareness Exercise/G warm-up maneuver: Accomplish a G-awareness exercise on
 sorties that include maneuvers that require or may result in 3 or more Gs. This may be
 accomplished by performing the following procedures:
 a. Complete the Pre-Stalling, Spinning, and Aerobatic Checklist. Notify the other
 crewmember that you are going to commence the G-awareness Exercise.
 b. Begin wings level at 200-220 KIAS. Advance power to MAX, smoothly roll to
 70-80 degrees AOB, allowing the nose to drop slightly below the horizon (no more
 than 10 degrees), pause momentarily to stop roll and smoothly pull.
 c. The G-onset rate should be slow and smooth, allowing sufficient time to evaluate the
 effectiveness of the AGSM and determine G-tolerance. Increase Gs to approximately
 4 Gs for approximately 4 to 5 breathing cycles in order to allow full cardiovascular
 response.
 d. For advanced aerobatic and formation training, the G-awareness exercise should be
 flown to G-loads of 4 - 5 Gs.

905. CONTACT UNUSUAL ATTITUDES

1. Description. Recovery may be required due to an improperly flown maneuver,
 disorientation, area boundaries (lateral or vertical), an aircraft malfunction, or traffic conflicts.
2. **General.** The diverse and demanding missions performed by military aircraft often require maneuvers which involve unusual attitudes. An effective military pilot must therefore be trained to quickly recognize and then safely recover from unusual attitudes. This must often be accomplished while relying almost exclusively upon the interpretation of visual cues from outside the cockpit. In this stage of training you will perform the procedures for recovery from various unusual attitudes utilizing what is primarily a scan of visual references located outside the cockpit.

 a. The IP will configure the aircraft commensurate with entering an aerobatic maneuver of choice. Refer to Figure 9-1.

 b. The instructor will then smoothly maneuver the aircraft so as to place it in an unusual attitude.

 c. Once directed by the instructor, assume the controls and recover the aircraft in accordance with the following procedures. Recovery shall be accomplished by 6000 feet AGL.

Nose-High Recovery

A nose-high attitude can be encountered with insufficient airspeed to continue the maneuver. Immediate and proper recovery procedures prevent aggravated stall and spin. Expeditious return to level flight from a nose-high attitude, without departing controlled flight or exceeding aircraft limits.

![Figure 9-2 Nose-High Recovery](image)
3. **Procedures.**

 a. Set power to MAX (as required in low airspeed situations) and initiate a coordinated roll **past 90° AOB**. Utilize back stick pressure to bring the nose of the aircraft down to the nearest horizon. Depending on initial airspeed and aircraft attitude, a wings-level, inverted attitude may be reached. As the nose approaches the horizon, roll to an upright attitude (Figure 9-2).

 NOTE

 Do not push the stick forward and induce zero or negative G in an effort to nose the plane back to the horizon.

 NOTE

 Only rolling to 90° AOB and knife-edging to the horizon should be avoided as it relies primarily on gravity to bring the nose to the horizon. This will not produce as expeditious of a recovery as rolling past 90° AOB and using positive G.

 b. If the airspeed is low, the rollout may be delayed until the nose is definitely below the horizon. In some cases, the nose has to be flown well below the horizon to regain enough airspeed to feel positive pressure on the controls. When airspeed is sufficient, roll wings level, raise the nose, check for normal oil pressure, and use power as required to recover to level flight.

 c. Do not be too aggressive when pulling to the horizon or pulling up from a nose-low attitude. The stick shaker and airframe buffet indicate a potential for stall. Decrease back-stick pressure before the stall.

 d. In all cases, observe system limitations when operating near zero-G.

 e. During some nose-high, low airspeed situations, when the aircraft responds to inputs slowly due to low airspeed or torque effect, a reduction in power may be required (usually below 60% torque) and all available control authority may be required to smoothly return the aircraft to level flight. If the aircraft does not respond normally, or if situational awareness is lost, an OCF recovery shall be accomplished.

4. **Common Errors.**

 a. Failure to set power to MAX (as required in low airspeed situations).

 b. Pushing the nose over (resulting in 0 or (-) G's)."

 c. Failure to roll past 90° AOB, resulting in an inability to use backpressure to bring the nose to the horizon.
Nose-Low Recovery.

Aerobatics require nose-low attitudes. Immediate and proper recovery procedures prevent a high-speed dive or excessive G-forces. Expeditious recovery to level flight from a nose-low attitude with minimum altitude loss and without exceeding aircraft limits.

Figure 9-3 Nose-Low Recovery

5. Procedures.

Roll the aircraft to the nearest horizon while simultaneously reducing the PCL to IDLE. Use the speed brake as required. Do not exceed maximum allowable airspeed (316 KIAS). Airspeed may continue to increase as the nose is raised, and maximum airspeed can occur just before level flight is attained. G-loading increases during recovery. Accomplish a proper AGSM. With the nose on or slightly above the horizon, check oil pressure is normal then set power as required (Figure 9-3).

Not reducing power and extending speed brake to prevent excessive airspeed.

Inverted Recovery.

Immediate and proper recovery procedures prevent a high-speed dive or excessive G-forces. Expeditious recovery to level flight from an inverted attitude with minimum altitude loss and without exceeding aircraft limits.
7. **Procedures.**

 a. When slightly nose-high, nose-low, or near an inverted position, recover by rolling in the shortest direction to set the aircraft in an upright position adding power as required. With the nose on or slightly above the horizon, check oil pressure is normal then power as required.

 b. For purely inverted recoveries, execute a coordinated roll to the nearest horizon.

8. **Common Errors.**

Not rolling in shortest direction to horizon.

906. LOOP

1. **Description.** The loop is a 360° turn in the vertical plane with constant heading and nose track. Because it is executed in a single plane, the elevator is the principle control surface. Ailerons and rudder are used to maintain directional control and coordinated flight. The maneuver is complete when wings are level at the horizon on the same heading as at entry.

![Figure 9-4 Loop](image)

2. **General.** The Loop is one of the most rudimentary aerobatic maneuvers, yet one which requires skill and practice to consistently perform well. The nose pitch rate should be constant, but the aft stick force required to obtain this will vary with airspeed and "G" loading. Directional control is maintained by adjusting rudder input as the airspeed varies, thereby maintaining balanced flight. Aileron is used only in making corrections to maintain the wings parallel with the horizon throughout the entire maneuver.
NOTE

Inability to center the ball may indicate rudder mis-trim, a rudder trim system malfunction or a rudder jammed in other than neutral position.

11. Brakes - Press and release both left and right pedals simultaneously 2-3 times (BOTH)
12. Rudder pedals - Adjust forward and aft using adjustment crank (BOTH)
13. Descend below 10,000 feet MSL
14. PRESSURIZATION switch - RAM/DUMP
15. Rudder Pedals - Slowly check range of motion in both directions via a straight ahead slip (left, pause in neutral and then right) while observing turn and slip indication. required for landing

WARNING

• Use extreme caution when reversing control inputs during slip maneuvers. Reversing the control inputs (opposite rudder and aileron) without first neutralizing the controls may cause the aircraft to depart controlled flight.

• If a mechanical rudder system malfunction is suspected, full rudder deflection is not recommended.

CAUTION

The stall speed is greatly increased during slips (uncoordinated flight condition).

NOTE

Reference table below to determine maximum crosswind component for landing. Plan to land on a runway with a crosswind component equivalent to or less than the maximum observed rudder turn and slip indication (ball widths).

<table>
<thead>
<tr>
<th>Maximum Crosswind Component for Landing</th>
<th>Turn and Slip Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 knots</td>
<td>1 ball width</td>
</tr>
<tr>
<td>15 knots</td>
<td>2 ball widths</td>
</tr>
<tr>
<td>20 knots</td>
<td>3 ball widths</td>
</tr>
</tbody>
</table>

NOTE

During level flight, approximately 60 lbs. of rudder pedal force yields an approximate turn and slip indication of 2 ball widths.

16. CONTROLLABILITY CHECK - Execute (if unable to achieve normal rudder control)

NOTE

If necessary to divert to a field with a safe crosswind component, consideration must be given to diversion range summary performance for unpressurized flight. If fuel state dictates, it is permissible to re-pressurize the aircraft in order to reach a suitable alternate. Execute the CONTROLLABILITY CHECK at the alternate destination.

17. Land as soon as practical

CONTROLLABILITY CHECK (STRUCTURAL DAMAGE/FLIGHT CONTROL MALFUNCTION)

If experiencing any rudder-related malfunctions, do not execute the Controllability Check (Structural Damage/Flight Control Malfunction) checklist until directed by the Rudder System Malfunction checklist.

If a bird strike, structural damage, or a flight control malfunction occurs or is suspected in flight, a decision to abandon the aircraft or attempt a landing must be made. The following check aids the pilot in determining whether the aircraft may be safely landed, and if so, what configuration is best for safe landing.

NOTE

If unable to manipulate any flight control surface, control may be available from the other cockpit.

1. Climb to minimum 6500 ft AGL, if practical
2. Check flight characteristics, gradually slowing aircraft to landing configuration and airspeed
Do not stall aircraft or slow to the point that full stick or rudder is required to maintain aircraft control. In no case should the aircraft be slowed below 90 KIAS or to activation of the stick shaker (approximately 15.5 AOA), whichever is higher.

Do not change configuration once controllability check is complete, as additional structural damage and/or an unsafe landing condition may occur.

If flap system damage is known or suspected, do not reposition flaps.

Ensure all power options (idle to max power) are attempted during the controllability check. With the PCL at IDLE, zero torque will simulate the flare and landing. This condition should demonstrate if the rudder is available for a normal landing.

Fly no slower than minimum controllable airspeed plus 20 KIAS until on final approach.

Fly a power-on, straight-in approach requiring minimum flare and plan to touch down at no less than previously determined minimum controllable airspeed.

Without full rudder authority and a crosswind component greater than 5 knots, directional control on final approach may be extremely difficult due to the inability to apply proper crosswind controls. Fly a no-flap, straight-in approach. If the need arises to discontinue the approach or go-around, a slow and steady application of the PCL may prevent torque effect from exacerbating aircraft control problems. On landing roll, differential braking may be required in order to prevent departure from the prepared surface.

Differential braking may aid in directional control upon touchdown.

If the engine has failed or has been shutdown, refer to OBOGS Failure/Physiological Symptoms procedures. Illumination of the OBOGS FAIL warning indicates the OBOGS system is no longer producing sufficient oxygen concentration or pressure. This condition may indicate a failure of the OBOGS heat exchanger, concentrator, bleed air supply, electrical system interface, or excessive system leakage. Failure of the OBOGS system may be accompanied by reduced pressure and/or quantity of breathing gas and may result in hypoxia symptoms if corrective action is not taken immediately.

If physiological symptoms are recognized at any point, proceed immediately to the OBOGS FAILURE/PHYSIOLOGICAL SYMPTOMS Checklist.

If the battery is depleted or fails, OBOGS will be inoperative.

* 1. PCL - Advance

Advance PCL as required to extinguish OBOGS FAIL warning. At low bleed air pressure conditions (e.g., PCL idle at high altitudes), bleed air pressure may drop sufficiently to momentarily illuminate the OBOGS FAIL warning. This does not necessarily indicate an OBOGS failure. If OBOGS FAIL warning extinguishes, continue flight.

2. OBOGS - CHECK (BOTH):
 a. OBOGS supply lever - ON
 b. OBOGS concentration lever - MAX
 c. OBOGS pressure lever - EMERGENCY
 d. OBOGS flow indicator - Check (flow indicator for normal operation)
Flap extension may require use of the emergency landing gear and flap extension system if the normal hydraulic system pressure has dropped below usable levels. If the emergency gear handle has not been pulled previously to lower the landing gear, it will have to be pulled in order to emergency extend the flaps.

Landing gear and flap retraction is not possible once extended using emergency landing gear extension system.

5. Land as soon as practical

Rudder System Malfunction

The rudder may bind or jam for a variety of reasons. Rudder binding/jamming incidents have been characterized by a sudden restriction to rudder movement, in varying degrees of severity ranging from full rudder movement with “resistance” (binding) to a jammed rudder with minimal rudder movement (jamming). Often the rudder “releases” either while airborne or sometime during the landing or roll-out.

An out-of-trim rudder, caused by pilot input or TAD input, may be perceived by the pilot as a rudder system malfunction. Re-trimming the rudder may alleviate the increased rudder forces. Absent an actual mechanical malfunction, an out of trim rudder will still allow for full deflection of the rudder at approach/landing airspeeds.

If rudder trim push rod failure is suspected, binding/jamming may occur on internal components of the rudder trim system. This binding/jamming may cause control forces to exceed normal limits. With a rudder trim push rod failure the trim indications will respond to trim inputs but will have no effect upon rudder pedal forces or actual trim tab position.

In any case, movement of the rudder trim or rudder pedals in both directions may eliminate the binding/jamming condition and allow for easier controllability. If unable to eliminate the binding/jamming, changing the rudder pedal position, bank angle, power, pitch attitude and/or airspeed may relieve some excessive rudder forces. In all cases, use whatever means available to maintain aircraft control.

With a jammed rudder, landing difficulty increases proportionally with an increase in crosswinds due to the inability to apply normal crosswind controls during approach, landing and roll-out. Differential braking may be required in order to prevent departure from the prepared surface.

1. Gear, flaps, speed brake - UP

2. Gust lock - Check Stowed

WARNING

Failure to stow the gust lock completely may prevent the flight controls from operating properly. Any attempt to actuate the flight controls with the gust lock not properly stowed may result in damage to the flight control assemblies. Ensure the gust lock is not impeded by the leather boot at the base of the control stick.

3. Climb to minimum 6500 ft AGL

NOTE

If necessary, relax rudder pedal force and allow heading to drift, controlling heading with bank angle. If the aircraft turn and slip indicator is fully deflected, remain below 140 KIAS. Consideration may be given to reducing power to regain/maintain directional control.

4. Airspeed - 120-140 KIAS

5. TAD switch - OFF

6. TRIM DISCONNECT switch - NORM (BOTH)

7. RUD TRIM circuit breaker (left front console) - CHECK; RESET IF OPEN

8. Rudder trim indicator/turn and slip indicator - Verify indications (BOTH)

NOTE

A fully deflected cockpit rudder trim position indicator may be indicative of a significant rudder mis-trim and/or a runaway rudder trim condition.

9. Rudder trim - Move to achieve two ball widths deflection as indicated on the trim slip indicator (wings-level, left and then right)

NOTE

With a rudder trim push rod failure, the cockpit trim position indications will respond to trim inputs but will have no effect upon rudder pedal forces, trim slip indicator or actual trim tab position.

10. Rudder trim - Re-trim aircraft and verify the turn and slip indicator (ball) is centered, wings-level, without applying any rudder pedal input/force.
NOTE
Inability to center the ball may indicate rudder mis-trim, a rudder trim system malfunction or a rudder jammed in other than neutral position.

11. Brakes - Press and release both left and right pedals simultaneously 2-3 times (BOTH)
12. Rudder pedals - Adjust forward and aft using adjustment crank (BOTH)
13. Descend below 10,000 feet MSL
14. PRESSURIZATION switch - RAM/DUMP
15. Rudder Pedals - Slowly check range of motion in both directions via a straight ahead slip (left, pause in neutral and then right) while observing turn and slip indication. required for landing

WARNING
- Use extreme caution when reversing control inputs during slip maneuvers. Reversing the control inputs (opposite rudder and aileron) without first neutralizing the controls may cause the aircraft to depart controlled flight.
- If a mechanical rudder system malfunction is suspected, full rudder deflection is not recommended.

CAUTION
The stall speed is greatly increased during slips (uncoordinated flight condition).

NOTE
Reference table below to determine maximum crosswind component for landing. Plan to land on a runway with a crosswind component equivalent to or less than the maximum observed rudder turn and slip indication (ball widths).

<table>
<thead>
<tr>
<th>Maximum Crosswind Component for Landing</th>
<th>Turn and Slip Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 knots</td>
<td>1 ball width</td>
</tr>
<tr>
<td>15 knots</td>
<td>2 ball widths</td>
</tr>
<tr>
<td>20 knots</td>
<td>3 ball widths</td>
</tr>
</tbody>
</table>

NOTE
During level flight, approximately 60 lbs. of rudder pedal force yields an approximate turn and slip indication of 2 ball widths.

16. CONTROLLABILITY CHECK - Execute (if unable to achieve normal rudder control)

NOTE
If necessary to divert to a field with a safe crosswind component, consideration must be given to diversion range summary performance for unpressurized flight. If fuel state dictates, it is permissible to re-pressurize the aircraft in order to reach a suitable alternate. Execute the CONTROLLABILITY CHECK at the alternate destination.

17. Land as soon as practical

CONTROLLABILITY CHECK (STRUCTURAL DAMAGE/FLIGHT CONTROL MALFUNCTION)
If experiencing any rudder-related malfunctions, do not execute the Controllability Check (Structural Damage/Flight Control Malfunction) checklist until directed by the Rudder System Malfunction checklist.

If a bird strike, structural damage, or a flight control malfunction occurs or is suspected in flight, a decision to abandon the aircraft or attempt a landing must be made. The following check aids the pilot in determining whether the aircraft may be safely landed, and if so, what configuration is best for safe landing.

NOTE
If unable to manipulate any flight control surface, control may be available from the other cockpit.

1. Climb to minimum 6500 ft AGL, if practical
2. Check flight characteristics, gradually slowing aircraft to landing configuration and airspeed
NOTE: Brief items applicable to your mission in sufficient detail to prevent any misunderstandings between crewmembers

Minimum Altitudes
- Aerobatics or confidence maneuvers: 6,000’ AGL.
- Spins: > 10K MSL and < 22K MSL, ensure spin developed by 13,500’ AGL.
- Progressive spin: 19,000’ AGL.
- Ejection:
 - Controlled: 2,000’ AGL.
 - Uncontrolled: 6,000’ AGL.
- Dual: 1000’ AGL (unless on syllabus LL event on scheduled route).
- Night: 2000’ AGL.
- Noise sensitive areas (beaches, sporting events, etc.): 3000’ AGL.
- Formation Low Approach: 100’ AGL.

Minimum Weather
- Aerobatics: Clear of clouds (if in MOA) with discernable horizon.
- OCF requires ground reference and visible horizon and no higher than a 4,000’ overcast.
- NSE Pattern: 1000/3 VFR.

“Knock-It-Off” Situations - “Knock-It-Off” will be called when safety of flight is a factor or where doubt or confusion exists (examples are listed below):
- A dangerous situation is developing.
- Situational awareness (SA) is lost.
- Any aircraft exceeds maneuvering limits that compromise Safety of Flight (for example, over-G, minimum airspeed).
- Bingo fuel is inadvertently overflown.

“Terminate” Situations - When Safety of Flight is not a factor, “terminate” will be used to discontinue maneuvering:
- Bingo fuel is reached.
- Desired learning objectives are met.
- The aircraft is out of position with no expectation of an expeditious return to position.

“Knock-It-Off”/ “Terminate” Actions
- Clear the flight path
- Cease maneuvering and climb or descend to a safe altitude
- Maintain visual if able
- Acknowledge IAW FWOP/FTI

Low Level Flights
- Low Levels shall not be flown solo.
- Enter route no earlier than 30 min after sunrise and exit no later than 30 min before sunset.
- Fly at an altitude of 500’-1500’ AGL, maintain min of 500’ above highest terrain w/2000’ of the aircraft.
- Plan to fly a minimum of 500’ above highest obstacle w/ 2 NM of the aircraft. After obstacle positively identified, maintain 2000’ horizontal clearance.
- Off station Low Levels require Ops Officer approval.
- Radar altimeter shall be used, set no lower than 10% of altitude.
- Bird Hazard: Low/Moderate can be flown; if Severe, do not enter route.
- Aircrew shall not enter route unless w/ + / - 3 minutes of schedule entry time.
G-Awareness Exercise
- Fly the G-awareness exercise in airspace that is free from potential conflict; ensure adequate spacing between formation aircraft.
 - Perform any time > 3Gs anticipated for sortie.

Lost Sight or “Blind”
- The pilot flying the aircraft that loses sight will call “blind” and the altitude.
- The visual aircraft will assume formation deconfliction and execute the following:
 • If the #1 aircraft is blind, transmit “blind, X,XXX feet” and maintain a predictable flightpath.
 • The wingman will either call “continue” and state his or her position or call “Knock-It-Off”.
 • If the wingman is blind, transmit “blind, X,XXX feet” & maneuver away from #1’s last known position. #1 will coordinate for a rejoin.

TRAINING TIME OUT POLICY
- Called in any training situation where a student or IP expresses concern for personal safety or requests clarification of procedures or requirements. Also relief from physical discomfort.

FORMATION
- SECTION TAKEOFF / LANDING
 • Circling minimums.
 • Dry runway.
 • Runway: Min 5000’ length / 150’ wide.
 • 10 kts max crosswind.
 • Formation Touch and Go is prohibited.
 - Basic Formation training limited to local area unless approved otherwise by TW5.

STUDENT SOLO (FWOP)
- 10 kts crosswind.
- 25 kts headwind.
- No tailwind.
- 5000’ runway.
- WX 5000/5 (3000’/5 formation solo) home field to depart, clear in area.
- Prohibited from practicing emergencies / ELPs / NF Landings.
- On deck NLT 30 mins. prior to sunset.

FLIGHT TIME (FWOP)
- Daily flight time should not exceed 3 flights / 6.5 hours total.
- Squadron Commanders may approve up to a 14 hour crew duty day.

FWOP RESTRICTIONS
- PPELs may be practiced day and night at uncontrolled airfields, but pilots are reminded general aviation pilots may be unfamiliar with ELP traffic pattern.
 - Aircrew should not depart NSE on CCX or O&I with more than 2 tire cords exposed.
 - When NSE/NDZ closed, practice instrument approaches under VFR conditions are authorized however 500’ AGL shall be used as lowest MDA or DH.
 - Taxi lines in the HUB are not mandatory during daylight hours.
 - Aerobatics/OCF in all Alert Areas shall squawk 4700 (unless on discreet squawk).
 - TW5 aircraft shall not operate at NOLFs without an RDO present.
Ejection Seat Sequencing Mitigation

Procedures

<table>
<thead>
<tr>
<th>Dual Flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISS Mode Selector – SOLO in flight (Before Takeoff checks)</td>
</tr>
<tr>
<td>RCP occupant shall initiate ejection ON third “EJECT” call</td>
</tr>
<tr>
<td>FCP occupant shall initiate ejection NET ~0.5 sec AFTER third “EJECT” call</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solo Flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal NATOPS Procedures Apply</td>
</tr>
<tr>
<td>Ensure ISS Mode Selector is in SOLO</td>
</tr>
</tbody>
</table>

CRM

<table>
<thead>
<tr>
<th>RCP Delaying Ejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>May lead to collision with FCP seat</td>
</tr>
<tr>
<td>RCP shall not hesitate or delay ejecting</td>
</tr>
<tr>
<td>RCP occupant shall initiate ejection ON third “EJECT” call</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FCP Initiating Ejection Too Soon</th>
</tr>
</thead>
<tbody>
<tr>
<td>May lead to collision with RCP seat</td>
</tr>
<tr>
<td>FCP shall initiate ejection NET ~0.5 sec after third “EJECT” call</td>
</tr>
</tbody>
</table>

Contingencies

<table>
<thead>
<tr>
<th>FCP Incapacitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ISS Mode Selector – BOTH</td>
</tr>
<tr>
<td>2. RCP – Eject</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICS Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Face curtain” signal serves as the preparatory command during a controlled ejection. A thumbs up from each occupant is required to initiate ejection sequence.</td>
</tr>
<tr>
<td>FCP shall initiate ejection sequence with three “raps” of the canopy</td>
</tr>
<tr>
<td>RCP occupant shall initiate ejection ON third “rap”</td>
</tr>
<tr>
<td>FCP occupant shall initiate ejection NET ~0.5 seconds AFTER third “rap”</td>
</tr>
</tbody>
</table>

Misc

<table>
<thead>
<tr>
<th>Unqualified personnel prohibited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must be NATOPS qualified, enrolled in a formal aviation syllabus, or an observer qualified Naval Flight Officer, Flight Surgeon, or Aeromedical Safety Officer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Delaying ejection below 2,000 ft AGL is not recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any delays may negatively impact the ejection envelope</td>
</tr>
</tbody>
</table>

| FCP occupant initiates ejection NET ~0.5 sec AFTER third “EJECT” call or immediately after confirming the RCP occupant has ejected |
| Proper manual ejection sequencing requires the RCP occupant to eject prior to the FCP occupant |